Developing a PPI for Scientific Research & Development NAICS 5417/ ISIC 7310

David Friedman

Assistant Commissioner for Industrial Prices & Price Indexes 25th Meeting of Voorburg Group Vienna, Austria 23 September 2010

www.bls.gov

Presentation Overview

Significance of R&D in US

- Issues related to constructing deflators
- Considerations in developing a USPPI for R&D
 - Industry Output Definition
 - Obtaining new transaction prices
 - Maintaining a constant quality index
 - Sampling

Summary

Significance of R&D in USA

- NSF: R&D expenditures grew from \$288.3 billion in 2003 to \$397.6 billion in 2008
- BEA Satellite Account: treat R&D as investment
 - 6.3% of real GDP growth between 1998 and 2007
 - ▶ 6.6% between 2002 and 2007

Real GDP vs. Real R&D Investment

U.S. Bureau of Economic Analysis

Sources of Business R&D's Contribution to Real GDP Growth, 1998-2007

Source: Bureau of Economic Analysis

Challenge: Constructing a Deflator

- Ideal: a PPI that directly measures actual market transactions for R&D output
- BEA current proxies
 - Cost-based aggregate of indexes for inputs
 - Weighted combination of gross output prices of industries investing in R&D
 - Next best alternatives in lieu of actual R&D output prices

Overall Issue: Feasibility

- Is R&D output measurable for the purposes of a true price index?
 - Can we identify a *marketable* output?
 - Are transactions *recurring*?
- BEA has expressed interest in BLS developing PPI for business R&D output
- If funding became available, how would we approach development?

Four Areas of Investigation

Industry output definition
Obtaining net transaction prices
Maintaining a constant quality index
Sampling

Industry Output Definition

- Concentrate on business purchases of R&D
 - 34% of R&D expenditures for all for-profit industries in 2007
- Focus on NAICS 5417, Scientific R&D Services
 - I/O data indicates output is used by large portion of R&D intensive industries

Industry	Percent
All industries	7.1
	0.0
Manufacturing industries	6.9
Pharmaceuticals/medicines	14.1
Computers/peripheral equipment	11.9
Communications equipment	26.7
Semiconductor/other electronic components	19.3
Navigational/measuring/electromedical/control instruments	10.2
Motor vehicles/trailers/parts	5.8
Aerospace products/parts	8.7
Nonmanufacturing industries	7.3
Software publishers	17.8
Computer systems design/related services	24.8
Scientific R&D services	30.7

NOTE: R&D employment intensity is R&D employment divided by total employment.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Business R&D and Innovation Survey: 2008

Industry Output Definition: Questions

- What is the actual service to be measured?
- Is it R&D for a specific product or improvement?
- Is it R&D for a general class of product?
- Is it R&D for a specific industry?
- Does the output consist of the research services provided, the sale of licensing rights or patents, or some combination of both?

Net Transaction Prices

- Challenge: Services tend to be unique and non-recurring
- Model pricing as potential solution
- Model pricing vs. margin prices as an alternative

Net Transaction Prices: Questions

- Is model pricing methodology appropriate?
- Does it matter if the R&D contract results in a patent or license?
- Appropriate to measure licenses and patents separate from the R&D contracts?
- Similar transaction occur often for sale to be repriceable for a monthly index?

Constant Quality

 Advantages of model pricing – allows service delivery process, type of buyer, & contract terms to be held constant
 Importance of directed substitution

Sampling Considerations

Identification of an appropriate frame Goes back to industry output definition Issues with NAICS definition Treatment of own-account R&D Representative of industry size 16,654 establishments classified in NAICS 5417 in 2007 Economic Census (preliminary)

Sampling: Questions

Who provides R&D?

- Are they stand-alone companies?
- Are they subsidiaries or divisions of manufacturing companies who also invest in own-account R&D?
- Would revenue derived from ownaccount R&D be included when determining relative weight of each frame unit?

Summary

- BEA targets introduction of R&D as investment component in the GDP accounts in 2013
- Likely to continue to use proxies
- Better understand production transformation processes for R&D
- Would a PPI that BLS could develop be useful? How robust and flexible?
- What can be priced periodically and how best to ensure measures of pure price change are captured?

Contact Information

David Friedman, Bonnie Murphy, Dee Bathgate Producer Price Index Program

Friedman.David@bls.gov <u>Murphy.Bonnie@bls.gov</u> <u>Bathgate.Deanna@bls.gov</u> THANK YOU FOR YOUR INPUT!

www.bls.gov